Overmolding: An Integrated Design Approach for Dimensional Accuracy and Strength of Structural Parts

Mark Bouwman, Thijs Donderwinkel, Jeroen Houwers & Sebastiaan Wijskamp
Moldflow User Meeting, 02/05/2017, Eindhoven
AGENDA

Interface strength of overmolded thermoplastic composites

- Introduction
 - Overmolding process
 - COMPeTE Project

- Interface strength
 - Modelling
 - Experimental validation
 - Conclusions
 - Simulation examples

- Shape distortions
 - Introduction and approach
 - Results and conclusions
OVERMOLDING

Process overview

Overmolding = stamp forming + injection molding

- Short cycle times
- Net shape manufacturing
- Integration of reinforcing ribs / functionality

One-step process: forming and injection molding combined
Two-step process: forming and injection molding separated
OVERMOLDING
COMPeTE Project: Composites OverMolding Production TElchnology

- **Background:**
 - Combination between stamp forming and injection molding
 - Series production & Function integration
 - Knowledge gap
 - Interface strength
 - Shape distortions

- **Objective: reduce development time**
 - Develop models and simulation tools, provide guidelines
 - Interface strength
 - Shape distortions

- **Polymers of interest:**
 - PA6, PEEK
Interface strength
OVERMOLDING
COMPeTE Project: Interface strength

Objective:

- Develop models and simulation tools
 - Autodesk Moldflow for injection molding / thermal simulation
 - Predict the interface strength with relatively simple models
 - Input data easily obtained

- Characterize the interface strength using small research geometries
 - Tensile / shear loading

V-notched (Iosipescu) geometry:

Rib-on-plate geometry:
OVERMOLDING PROCESS

Process overview

Interface between:
- Insert
 - Woven fabric / UD laminate
 - Preheated shell / molten blank
- Flow
 - Short fiber reinforced polymer

Limited time for bonding:
- High cooling rates
 - Low mold temperature
- Heat transfer from flow to insert

Process parameters → Interface strength?

Moldflow simulation for $T_{\text{insert}} = T_{\text{mold}}$
INTERFACE STRENGTH
Development of the bond strength

Time required for intimate contact:
\[t_{ic} \propto \frac{\eta_0}{P} \rightarrow \text{neglect} \]

Degree of healing: strength with respect to a fully healed surface

Time required for healing:
\[D_h(t) = \frac{\sigma(t)}{\sigma_\infty} = \left[\int_0^t \frac{1}{t_r(T(t))} \, dt \right]^{1/4} \]

Temperature profile
Polymer reptation time

ThermoPlastic composites Research Center

TPRC proprietary
INTERFACE STRENGTH
Polymer reptation time

Reptation time:
- Required time to complete healing
- Temperature dependent
- Highly influenced by crystallites

Boundary conditions for healing:
- T_g

Reptation time

Healing of amorphous polymers

TPRC proprietary
INTERFACE STRENGTH
Polymer reptation time

Reptation time:
- Required time to complete healing
- Temperature dependent
- Highly influenced by crystallites

Boundary conditions for healing:
- T_g
- T_m (heating)
- Crystallization temperature (cooling)
INTERFACE STRENGTH

Temperature profile

Insert heats up during overmolding
- Approaches average between T_{inj} and T_{insert}
- For constant c_p and no melting enthalpy

![Temperature profile diagram](image)

What happens if:
- $T_{\text{insert}} < T_m$
- $T_{\text{insert}} > T_m$

Semi-crystalline PA6
- $T_m = 220 \, ^\circ\text{C}$
- $T_{\text{inj}} = 300 \, ^\circ\text{C}$
- $T_{\text{mold}} = T_{\text{insert}} = 160 \, ^\circ\text{C}$

Moldflow simulation

![Moldflow simulation graph](image)
INTERFACE STRENGTH

Temperature profile and boundary conditions

Boundary conditions:
- **$T < T_m$**
 - No healing
- **$T > T_m$**
 - Healing according to model
 - t_{rep} is very short above T_m
 - For PA6 and PEEK
 - ‘Instantaneous’ healing
- Simulation is very sensitive:
 - T_{insert} (thermal simulation)
 - Onset for healing (T_m)
 - Melting trajectory

Alternative approach?
INTERFACE STRENGTH
Degree of melting for semi-crystallines

Heat flow [J/s] vs. Temperature [°C]

Degree of healing D_h vs. Degree of melting D_m

Degree of melting D_m vs. Temperature [°C]

Degree of healing D_h vs. Maximum temperature [°C]

ThermoPlastic composites Research Center

TPRC proprietary
MODELLING
Numerical implementation

Moldflow analysis:

- Injected polymer
- Insert
- Gate
- Interface

No healing below T_m:

$T_{inj} = 300$ °C
$T_{mold} = T_{insert} = 160$ °C

GUI for healing analysis:

- Mesh data
- Temperature data

D_m approach:
EXPERIMENTAL VALIDATION
Iosipescu geometry: Tensile test

Overmolding B3K on B3K, $T_{\text{mold}} = T_{\text{insert}} = 90$ °C, T_{inj} varied

Typical force-displacement diagram

- Fully IM
- $T_{\text{inj}} = 260$ °C
- $T_{\text{inj}} = 280$ °C
- $T_{\text{inj}} = 300$ °C

Tensile test for B3K on B3K insert

- Fully injection molded specimen

$T_{m} = 220$ °C, Average temperature: 175 °C, 185 °C, 195 °C
EXPERIMENTAL VALIDATION

PA6 – Tensile. $T_{\text{inj}} = 280^\circ C$, $T_{\text{mold}} = 90^\circ C$

B3ZG6 on CETEX TC912 laminate. $T_{\text{mold}} = 90^\circ C$, $T_{\text{inj}} = 280^\circ C$

$T_m = 220^\circ C$
Average temperature:
Degree of healing (model):

<table>
<thead>
<tr>
<th>Insert temperature</th>
<th>90°C</th>
<th>180°C</th>
<th>230°C</th>
<th>270°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile stress [MPa]</td>
<td>185°C</td>
<td>230°C</td>
<td>255°C</td>
<td>275°C</td>
</tr>
<tr>
<td>Degree of healing</td>
<td>2%</td>
<td>50%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
EXPERIMENTAL VALIDATION

PA6 – Tensile. $T_{\text{inj}} = 280^\circ\text{C}$, $T_{\text{mold}} = 90^\circ\text{C}$

B3ZG6 on CETEX TC912 laminate. $T_{\text{mold}} = 90^\circ\text{C}$, $T_{\text{inj}} = 280^\circ\text{C}$

$T_m = 220^\circ\text{C}$ Average temperature: 185 °C 230 °C 255 °C 275 °C
Degree of healing (model): 2% 50% 100% 100%
EXPERIMENTAL VALIDATION

PA6 – Tensile. \(T_{\text{inj}} = 280^\circ \text{C}, T_{\text{mold}} = 90^\circ \text{C} \)

B3ZG6 on CETEX TC912 laminate. \(T_{\text{mold}} = 90^\circ \text{C}, T_{\text{inj}} = 280^\circ \text{C} \)

\[T_m = 220^\circ \text{C} \quad \text{Average temperature:} \quad 185^\circ \text{C}, 230^\circ \text{C}, 255^\circ \text{C}, 275^\circ \text{C} \]

\[\text{Degree of healing (model):} \quad 2\%, 50\%, 100\%, 100\% \]
EXPERIMENTAL VALIDATION

PA6 – Tensile. $T_{\text{inj}} = 280^\circ\text{C}$, $T_{\text{mold}} = 90^\circ\text{C}$

B3ZG6 on CETEX TC912 laminate. $T_{\text{mold}} = 90^\circ\text{C}$, $T_{\text{inj}} = 280^\circ\text{C}$

5 mm

$T_m = 220^\circ\text{C}$

Average temperature:

Degree of healing (model):

- 185 °C: 2%
- 230 °C: 50%
- 255 °C: 100%
- 275 °C: 100%
EXPERIMENTAL VALIDATION

PA6 – Tensile. $T_{\text{inj}} = 280^\circ\text{C}$, $T_{\text{mold}} = 90^\circ\text{C}$

B3ZG6 on CETEX TC912 laminate. $T_{\text{mold}} = 90^\circ\text{C}$, $T_{\text{inj}} = 280^\circ\text{C}$

Average temperature: 185 °C 230 °C 255 °C 275 °C
Degree of healing (model): 2% 50% 100% 100%

Fiber migration into mold cavity \rightarrow mechanical interlocking \rightarrow higher strength
EXPERIMENTAL VALIDATION

PA6 – Tensile. $T_{\text{inj}} = 280^\circ\text{C}$, $T_{\text{mold}} = 90^\circ\text{C}$

B3ZG6 on CETEX TC912 laminate. $T_{\text{mold}} = 90 \ ^\circ\text{C}$, $T_{\text{inj}} = 280 \ ^\circ\text{C}$

$T_m = 220 \ ^\circ\text{C}$
Average temperature:
Degree of healing (model):

- 185 $^\circ\text{C}$: 2%
- 230 $^\circ\text{C}$: 50%
- 255 $^\circ\text{C}$: 100%
- 275 $^\circ\text{C}$: 100%

Fiber migration into mold cavity \rightarrow mechanical interlocking \rightarrow higher strength
CONCLUSIONS
Modelling and experimental validation

Modelling:
- Model for bond strength prediction:
 - Moldflow
 - Non-isothermal healing model for amorphous polymers
 - Modified approach for semi-crystalline polymers
 - Melting behavior

Experimental validation:
- Small research geometries
- Migration of fibers for high T_{insert}
- PA6: Bond strength for $T_{\text{average}} < T_m$
 - Model is able to predict the bond strength qualitatively
 \Rightarrow Identify critical area’s
SIMULATION EXAMPLES

Overmolding V-shape PEEK ($T_{\text{inj}} = 380°C$, $T_{\text{mold}} = T_{\text{insert}} = 220°C$)

Degree of healing after overmolding:

Gate locations

Possible crack-initiator

D_h

0

1
SIMULATION EXAMPLES

Overmolding Demonstrator PEEK ($T_{\text{inj}} = 400^\circ\text{C}$, $T_{\text{mold}} = T_{\text{insert}} = 250^\circ\text{C}$)
SIMULATION EXAMPLES

Overmolding Demonstrator PEEK ($T_{\text{inj}} = 400^\circ\text{C}$, $T_{\text{mold}} = T_{\text{insert}} = 250^\circ\text{C}$)

Development of degree of healing during overmolding:
Shape distortions
SHAPE DISTORTIONS

Introduction

CTE mismatch

through-thickness stress distribution

warpage

material non-symmetry

warpage

laminate thickness = 0.15 mm

cavity height = 4 mm

spring-in

ThermoPlastic composites Research Center

Confidential and proprietary
SHAPE DISTORTIONS

Approach

- Conventional method (Moldflow)
 - Thermo-mechanical shrinkage without crystallization
 - Stress-free assumption
 - Uniform/nominal thickness

- Coupled approach for insert modelling (AniForm + Moldflow)
 - Temperature-dependent coefficient of thermal expansion and crystallization shrinkage
 - Shear angle-dependent properties
 - Fiber stresses from the stamp forming process
 - Thickness changes

- Model validation
 - Single curved geometry
 - Doubly curved geometry
SINGLE CURVED GEOMETRY

Results: Spring-in angle

G/PA6 laminate

C/LMPAEK laminate

Spring-in angle value with respect to 90°
SINGLE CURVED GEOMETRY

Results: Curvature

G/PA6 laminate + unfilled PA6

C/LMPAEK laminate + filled C/PEEK

Positive curvature value: midpoint of curvature on the rib side
CONCLUSIONS

Single curved geometry

- **G/PA6:**
 - **Spring-in angle** and **curvature** are more accurate using the coupled approach

- **C/LMPAEK:**
 - Improvement in predicting the **spring-in angle** and **curvature** after overmolding using the coupled approach
 - Decrease in **spring-in angle** is underestimated
 -> Possible underestimation of polymer shrinkage
DOUBLY CURVED GEOMETRY

Overview

Overmolded C/PAEK demonstrator: Simulated deformed shape (scaled):
TPRC COMPETE PROJECT PARTNERS

www.tprc.nl mark.bouwman@tprc.nl thijs.donderwinkel@tprc.nl
jeroen.houwers@tprc.nl sebastiaan.wijskamp@tprc.nl

UNIVERSITY OF TWENTE.
SAXION dtc ANIFORM
VIRTUAL FORMING Fokker

BOEING TENCATE DAHER-SOCATA GKN AEROSPACE

AUTODESK victrex KraussMaffei

SAFRAN Johnson Controls SMP
Harper Engineering Co.

KISTLER KRELUS INFRARED

ThermoPlastic composites Research Center

TPRC proprietary